
Page 1 of 9

Appendix D

4119Z1

State of Nebraska

Department of Insurance

Request for Proposal

Technology Framework

Page 2 of 9

BIDDER INSTRUCTIONS

The bidder and awarded contractor must follow this technology framework. Your proposal will

be scored against your ability to meet the requirements in this framework.

Technology Framework

1.1 General

As part of this RFP procurement process the State is looking for systems and technologies that

can form the basis for an Enterprise Architecture that can be utilized and leveraged across

Agencies within the State. As such, we are looking for a solution that is built upon a technology

framework that will support and promote this goal. The remaining sections of this document

describe what the State considers a “technology framework” and sets forth a set of criteria by

which the technical portion of proposals will be evaluated.

1.2 Definitions

Architecture - the fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its design and

evolution.

Service-Oriented Architecture – an architecture that aims to enhance efficiency, agility, and

productivity of an enterprise by positioning services as the primary means through which

solution logic is represented. Services act as containers of related capabilities. High-quality

service-oriented architectures are consistent with the following principles:

 Standardized service contract – services within the same service inventory are in

compliance with the same contract design standards.

 Service loose coupling – service contracts impose low consumer coupling requirements

and are themselves decoupled from their surrounding environment.

 Service abstraction – service contracts only contain essential information, and

information about services is limited to what is publish in the service contracts.

 Service reusability – services contain and express agnostic logic and can be positioned as

reusable enterprise resources.

 Service autonomy – services exercise a high level of control over their underlying

runtime execution environment.

 Service statelessness – services minimize resource consumption by deferring the

management of state information when necessary.

 Service discoverability – services are supplemented with communicative meta data by

which that can be effectively discovered and interpreted.

 Service composability – services are effective composition participants, regardless of the

size and complexity of the composition.

Page 3 of 9

Framework – for the purposes of this RFP, a framework is an extensible software platform

providing general purpose and domain-specific services in the context of a uniform, reusable,

service-oriented architecture with consistent abstractions. A framework may include the ability

to both directly instantiate end-user capabilities and to provide developer-centric capabilities.

1.3 MITA Technical Principles

The Framework should support the MITA technical principles:

 Business driven. Technology will only be used when it supports a business goal or

objective; technology will not be used for technology’s sake alone.

 Implementation neutral.

 Platform independent. Application software and infrastructure components should be

developed for reusability and platform independence.

 Adaptable, extensible, and scalable.

 Open technology and standards based. The advantages of standardization (e.g., data

sharing and interoperability) should be leveraged.

 Security and privacy must be integrated into a system.

 Interoperability standards are established and followed.

 Quality data are enabled to support good decision making.

 Current and proven technology is selected.

1.4 Seven Conditions and Standards

In order to receive enhanced Federal financial participation (FFP), the State must implement

solutions that are consistent with 42 CFR 433.112 and related guidance from the Centers for

Medicare and Medicaid Services (CMS), e.g., Medicaid IT Supplement MITS-11-01-V1.0,

commonly referred to as the seven conditions and standards (“Seven Conditions”). The

Framework must allow the State to satisfy, to the greatest extent practical, those portions of the

Seven Conditions that are system-related. The Seven Conditions are:

 Modularity Standard

 MITA Condition

 Industry Standards Condition

 Leverage Condition

 Business Results Condition

 Reporting Condition

 Interoperability Condition

1.5 Framework Attributes, and Areas of Commonality

1.5.1 Attributes

The following attributes are required in the proposed framework:

The Framework for the Exchange must be consistent. A framework is not merely a random or

semi-related set of utilities or generic services. Various services, tools, and data structures should

use a unified design paradigm and design patterns (service calls; service arguments and return

values; data types, etc.) to improve productivity and reduce defects driven by “impedance

Page 4 of 9

mismatches.” Frameworks encourage the use of helpful design patterns, but don’t force

developers into deep levels of abstraction that detract from their productivity (e.g., factories of

factories of factories). Database schema are normalized; data are stored in only one place within

the framework and its resulting applications; and these data are accessible only by service calls

to the services “owning” the data.

The Framework for the Exchange must promote interoperability. The use of standards

(where standards exist) and the use of well-documented information interchange specifications

(where standards do not exist) assist the using organization in producing and consuming

information and services that are interoperable with other systems and organizations.

Frameworks should make using interoperable standards easier than creating homegrown

interface solutions.

The Framework for the Exchange must externalize parameters that are prone to frequent

change. These include:

 Business rules

 Workflows

 Configuration, environment, and startup parameters

 Localization resources

 Security roles

 User interface elements

The Framework for the Exchange must be service-oriented. The Framework should provide

a discoverable service inventory containing service contracts having granularity that is neither so

coarse as to result in performance and governance issues nor so fine as to result in excessive

developer burden and poor reuse. Service orientation principles may be compromised to the

extent necessary to meet performance standards.

The Framework for the Exchange must enable functional build out by configuration rather

than customization as much as is practical. This likely requires that the base functionality, as

delivered, has been used and is configured to support the Medicaid and health insurance

domains.

The Framework for the Exchange should have a standard, domain-specific base data

model. This data model should be consistent, normalized, and incorporate the common data

elements used in Medicaid eligibility, enrollment, and member management. The data model

must be extensible via documented processes, and must not have any proprietary restrictions on

the State’s use or extension of the data model.

The Framework for the Exchange must encourage reuse. Areas of reuse may include:

 Intra-application. Developers on a single team should find it easy to reuse base

framework services or custom services built by other team members.

 Inter-application. Developers on different teams within the same organization should find

it easy to reuse base framework services to promote commonality and to discover and use

services created by other application teams.

Page 5 of 9

 Inter-enterprise. Developers in sister human and social services agencies and in sister

states should find it easy to reuse base framework services to promote commonality and

to discover and use services created by other agencies.

The Framework for the Exchange must have a security architecture that supports standard

security principles. These principles are:

 Confidentiality – prevent disclosure to unauthorized persons or systems.

 Integrity – data cannot be modified undetectably.

 Availability – access is not inappropriately blocked or denied.

 Authenticity – validation that the parties to a transaction are who they say they are and

that their communications are genuine.

 Non-repudiation – parties to a transaction cannot deny their participation in the

transaction.

 Auditability – track and log data changes including the user or system making the

change. Track and log any inquires, views or access of data that may require such

tracking as a result of law, policy or data use agreements including user or system making

inquiry, doing the viewing or accessing the data along with the data and time of the

inquiry, view or access.

The Framework for the Exchange must be architecturally-rich. A framework should have a

thoughtful architecture that is better than one in which an organization would normally invest for

a single project. Because a framework is intended to be reusable, the framework developer must

ensure that the breadth and depth of the services extend to cover the uses that can be reasonably

foreseen. Other attributes of the architecture are:

 The functional and structural abstractions chosen to implement the architecture are

intuitive, robust, and consistent. Confusing, frail, or inconsistent architectures can destroy

using development organization productivity and induce high defect rates.

 The framework is easily extensible. Lacking extensibility, a framework is merely an

incomplete software application.

 The framework supports scalable, high-performance applications.

 Security and privacy are built into the architecture as primary considerations rather than

as afterthoughts.

The Framework for the Exchange must enhance the productivity of the using organization.
An important reason for an organization to use a framework is to improve productivity. The

increase in productivity should enable an organization to deliver needed capabilities more rapidly

and at a lower cost. It should also enable the organization to respond to life-cycle changes in

business needs with greater agility. Frameworks enhance productivity by:

 Providing tools that assist the using organization in performing common, redundant, or

complex tasks with ease.

 Providing pre-constructed features, services, and capabilities with default behavior that

shorten the time from inception to deployment while allowing fine-grained control to

avoid the need for workarounds.

Page 6 of 9

 Being supported by a long-term maintenance concept that continues to improve the

features and usability of the framework, reduces the burden of workarounds (particularly

security workarounds), and minimizes “reinventing the wheel” by the using organization.

 Using self-documenting tools (e.g., maintaining the official business process diagrams in

the business process management system) to avoid having to maintain business and

technical design artifacts in multiple locations.

The Framework for the Exchange should be multi-platform unless user or enterprise needs

require targeting specific hardware/operating system platforms. As the use of specific

CPUs, hardware architectures, and operating systems change rapidly, the State prefers not to be

tightly bound to a particular platform. Support for various platforms such as Windows, z/OS,

Linux, and various UNIX is desirable. In addition, the State strongly prefers the use of products

that can be run in virtualized environments while recognizing that some components may have

performance needs that preclude or contraindicate the use of virtualization.

Additionally, the current migration towards mobile platforms is likely to continue for the

foreseeable future. A framework should assist with and automate activities needed to optimize

applications for mobile devices as well as desktop devices, including addressing touch interfaces;

limited display sizes; limited bandwidth and intermittent network connectivity; limited processor

capabilities; and the movement towards standards-based Web technologies, such as HTML 5.

Frameworks should minimize the number of programming languages necessary for their

use, consistent with developer need and balanced against other principles. The State has the

following goals for various types of programming languages:

 General – the State prefers using open, standards-defined programming languages to the

greatest extent practical. The State understands that there are some domains today

(particularly business rules and business process management) where standards are still

emerging and permeating the market.

 Object-oriented – the State prefers the use of a single object-oriented language, that uses

automated memory management, to create the majority of custom services and to extend

the Framework. While it would consider other languages, the State prefers Java.

 Procedural – the State prefers little or no use of procedural languages (e.g., C) in the

Framework.

 Declarative – the State prefers that declarative languages (e.g., HTML) largely be limited

to displaying Web-based user interfaces. Even when building user interfaces, the State

prefers to substantially limit the amount of hand-coding necessary by using graphical

design and construction tools.

 Scripting – the State prefers that scripting languages be limited to functions such as user

interface code , build management, system startup, and integration with non-service

based external systems. Even when performing these functions, the State prefers to

substantially limit the amount of hand-coding necessary by using graphical design and

construction tools.

 Business rules – the State prefers that business rules are represented in English-like

statements that are easy to interpret by business users and business analysts. While the

State is not currently planning to allow business analysts to make changes directly to a

production system, the ability for these analysts to create and interpret the business rules

Page 7 of 9

in the Framework’s native rules language will substantially improve productivity and

agility in managing business rules. Based on the state of the market, the State would be

willing to accept rules languages that are more developer-focused.

 Business Process Management System (BPMS) – the State prefers the use of Business

Process Execution Language (BPEL) for executing managed business processes. Direct

consumption of Business Process Model and Notation models (perhaps via the XML

Process Definition Language format) is also acceptable. As this area is still maturing, the

State would accept other languages for BPMS process execution, particularly if they are

transformable to BPEL for forward compatibility. While the State would like direct

access to the process execution files for manipulation, including the ability to “round

trip” modifications through the Integrated Development Environment, the BPMS must

have graphical design and construction tools as directly coding BPEL and other related

languages would likely result in substantial productivity reductions and an increase in

defects.

 Database – the State prefers the use of standards-based Structured Query Language

(SQL) for database queries. Based on the use of other languages and general purpose

frameworks within the Framework (e.g., Java), programming language-specific query

languages may also be acceptable (either for relational or object queries). The State

discourages the use of database stored procedures or DBMS specific functionality other

than in those instances where needed performance can only be obtained with such use.

 XML-based – the State encourages the use of XML-based documents for purposes such

as system configuration and messaging. The Framework should generate documents

without requiring the developer to hand-code XML; however, direct access to the XML

documents for manipulation is desirable, including the ability to “round trip”

modifications through the Integrated Development Environment.

 Proprietary languages – while there may be specific needs for using proprietary

programming languages, the State prefers to avoid proprietary languages to the greatest

extent practical.

1.5.2 Areas of Commonality

In the list below, the State has identified the areas of commonality it expects to be supplied by

the Framework or supplied by the State to supplement the Framework. These have been

identified using common product-oriented terminology, but that does not mean that each

capability must be satisfied by a separate, self-contained product. While the State has a

preference for using general purpose COTS products to perform major functions (where

Framework capabilities and performance are not compromised), it is not mandating that the

functions of the major capabilities be supplied by general purpose COTS products nor is it

mandating that the functions are even performed by standalone software services partitioned as

listed below. For example, while the State prefers the use of general purpose COTS business

process management and business rules management components, it would be willing to accept

an integrated business process/business rules capability as part of the Contractor’s COTS suite.

The State does not intend the list of capabilities to be all-inclusive. Bidders must propose a

complete suite of capabilities to comprise the Framework.

Page 8 of 9

1.5.2.1 Framework Areas of Commonality

The following areas of commonality and capabilities are consistent with the State’s goals for the

Framework and should be addressed in system solutions:

 Unified data source/database – this is a capability to store/persist information using a

unified data model on a common database product. The unified data source should

support the use of effective time segments and a “never delete a record” approach to

enable maintaining complete historical data and referential integrity.

 Business Process Management – this is a capability to design and execute business

processes enabled by automation for the purposes of orchestration (automated execution

of a workflow) and choreography (coordinated interaction between two or more

independent parties or services). While these may include steps executed synchronously,

business process management tools excel at automating processes where most or all tasks

are executed asynchronously, potentially over extended periods of time.

 Business Activity Monitoring (BAM) – this is a capability to monitor and manage

business processes, transaction volumes, and quality indicators, in real time and

retrospectively. This capability may include statistical analyses of the execution of the

indicators being monitored.

 Business Rules Management – this is a capability to design and manage the business

rules logic within the system and is supported by a repository for the rules.

 Interaction Management – this is a capability that allows an organization to manage

information about and interactions with stakeholders or clients via multiple channels

including easy access to historical data.

 Case Management – this is a capability that allows an organization to manage

information and transactional activities over time relative to a specific entity.

 Correspondence – this is a capability to generate and manage communications with

stakeholders via multiple channels, and includes the ability to generate canned, semi-

custom, and custom messages.

 Service Integration/Enterprise Service Bus – this is a capability that allows the

discovery and interaction of distributed services via synchronous and asynchronous

messaging in a service-oriented architecture. Through adapters, service integration should

also allow interaction with non-service based capabilities.

 Web Portal – this is a capability that allows for configurable Web access to backend

services. While any sort of Web page could conceivably allow access, a Web portal

automates the access, security, and configuration of Web access, and is configurable by

not only the developers, but to a limited extent by the end users (e.g., what information is

shown and where on the page is it shown).

 Reporting/Business Intelligence – this is a capability that allows for textual, tabular, and

graphical representations of data needed to answer questions, monitor/control parameters,

and make decisions and querying to gather data to fill these reports.

 Call Center Integration – this is a capability for the Framework (and resulting system)

to integrate with common call center technology to be able to link telephone calls to

records, automatically call up useful information for the call center operator, etc.

 Integrated Development Environment – this is a capability to develop, integrate, build,

test, deploy, and control configuration of software using a unified, integrated, and

coherent suite of tools.

Page 9 of 9

 Security – while security is an attribute that should apply across the suite of capabilities

in the Framework, in this particular case it is a capability to manage authentication,

authorization, and access to the system, including a single sign-on capability.

 Data Management Tools - This is the capability of collecting, aggregating, matching,

consolidating, persisting, securing and distributing data and its meta data to ensure

consistency and control in the ongoing maintenance and use of the information.

 Online Help – this is the capability to manage, produce, and publish help files, training,

and reference information that is integrated in a context-sensitive fashion with the

Framework and resulting applications.

 Document Management* - this is a capability to store, index, and access electronic

documents and images of paper documents in a structured and scalable manner. The

capability may have standalone uses or be integrated into an enterprise system via

documented interfaces or services.

*Note that the State has designated and procured Hyland OnBase as the enterprise

document management system. The preference would be to leverage OnBase as part of

the Framework, therefore the Bidder should provide details regarding how their proposed

Framework could integrate seamlessly with OnBase.

